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ABSTRACT 

The problem of dynamic stability of submersible vehicles in the dive plane is examined 

utilizing bifurcation techniques. The primary mechanism of loss of stability is identified in the 

form of generic Hopf bifurcations to periodic solutions. Stability of the resulting limit cycles is 

established using center manifold approximations and integral averaging. The hydrodynamic 

coefficients are calculated using existing semi-empirical methods. Parametric studies are 

performed with varying vehicle geometric properties. The methods described in this work could 

suggest ways to enlarge the submerged operational envelope of a vehicle early in the design 

phase. 
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I. INTRODUCTION 

A. PROBLEM OVERVIEW 

The increasing demands of using submersible vehicles for more complex and 

demanding missions, force us to use a variety of methods, mathematical mod- 

els, and assumptions for the study of their dynamic interactions and responses. 

This study is important in order to enhance vehicle operations. Typically, lin- 

earization of the equations of motion around nominal straight line level flight 

paths along with eigenvalue analysis can be employed (Arentzen and Mandel, 

1960), (Clayton and Bishop, 1982), (Feldman,1987). A simple but efficient 

stability criterion Gv > 0 can be obtained where the stability index Gv is 

function of the hydrodynamic coefficients in heave and pitch. Values for the 

stability index can be computed by, 

Mw(Zq + m) 
Gv~l~       ZwMq       ■ (1) 

This index is analogous to the familiar stability coefficient for horizontal plane 

maneuvering and can be thought of as a high speed approximation where the 

effect of the metacentric restoring moment is minimal (Papadimitriou,1994). 

If the value of Gv is greater than zero, the vehicle is dynamically stable. As it 

has been established in previous studies (Papoulias and Papadimitriou, 1995) 

though, this is only a sufficient, and rather conservative condition for stability. 

Nevertheless, it is widely used and its value is indicative of vertical plane sta- 

bility for any new design. We should keep in mind, however, that the condition 



Gv < 0 indicates a divergent loss of stability which is quite uncommon in the 

vertical plane. Most modern submarines exhibit a flutter-like instability at 

high speed, which can not be analyzed using the above simplified index. Di- 

vergent motions may develop in combined six degrees of freedom (Papoulias et 

al, 1993) and their occurrence can not be analyzed by a single stability index. 

Previous work (Papadimitriou, 1994) was limited to a single body with fixed 

hydrodynamic coefficients. In this work, we expand by allowing the geometry 

of the body and thus its hydrodynamic properties to vary. 

B. THESIS OUTLINE 

Previous work (Papoulias and Papadimitriou, 1995) analyzed the problem 

of stability of motion with controls fixed in the vertical plane, with partic- 

ular emphasis on the mechanism of loss of stability of straight line motion. 

The closed loop control problem was analyzed in (Papoulias et al, 1995). The 

surge equation was decoupled from heave/pitch through a perturbation series 

approach (Bender and Orszag, 1978). As was established in (Papadimitriou, 

1994) loss of stability occurs in the form of generic bifurcations to periodic 

solutions (Guckenheimer and Holmes, 1983). Taylor expansions and center 

manifold approximations were employed in order to isolate the main nonlinear 

terms that influence system response after the initial loss of stability (Hassard 

and Wan, 1978). Integral averaging was performed in order to combine the 

nonlinear terms into a design stability coefficient (Chow and Mallet-Paret, 



1977). Some difficulties associated with the nonsmoothness of the absolute 

value nonlinearities was dealt with by employing the concept of generalized 

gradient (Clarke, 1983). This was employed as an alternative to the lin- 

ear/cubic approximation typically used in ship roll motion studies (Dalzell, 

1978). The same methodology is applied in this work in order to analyze the 

sensitivity of the results with respect to geometric characteristics of the body. 

Vehicle modeling in this work follows standard notation (Gertler and Ha- 

gen, 1976), (Smith et al, 1978), and numerical results are presented for a family 

of bodies of revolution similar to the DARPA SUBOFF model (Roddy, 1990) 

for which a set of hydrodynamic coefficients and geometric properties is avail- 

able. This parametric study is conducted utilizing existing semi-empirical 

methods for the calculation of hydrodynamic coefficients. The methods are 

based on (Fidler and Smith, 1978), (Humphreys and Watkinson, 1978), (Pe- 

terson, 1980) and have been verified in (Wolkerstorfer, 1995). The effects of 

varying the nose, base, and tail fractions of the body as well its nondimen- 

sional volume to length ratio on the hydrodynamic derivatives were studied in 

(Holmes, 1995) where prediction equations were derived based on curve fitting 

of the results. These hydrodynamic prediction equations are normalized by 

taking the SUBOFF model as a baseline. This model has been experimentally 

validated for angles of attack on the hull between ±15 deg., while the constant 

coefficient approximation introduces very little error in time domain simula- 

tions (Tinker, 1978). Unless otherwise mentioned, all results in this work are 

presented in standard dimensionless form with respect to the vehicle length 



L = 4.26 m, and nominal forward speed U = 2.44 m/sec (Papadimitriou, 

1994). 



II. PROBLEM FORMULATION 

A. EQUATIONS OF MOTION 

In order to obtain the mathematical model the following assumptions, re- 

strictions, and definitions have to be made: 

1. The submersible vehicle motion is restricted in the vertical plane, thus 

the model consists of coupled nonlinear heave and pitch equations. 

2. The coordinate frame is fixed at the vehicle's geometrical center. 

3. Vehicle is port/starboard symmetric and neutrally buoyant. 

4. Use Newton's equations of motion in dimensionless form. 

The nonlinear heave and pitch equations become: 

m(w — uq — zgq2 — xgq) = Zqq + Z^w + Zqq + Zww 

/•nose 

—CD b(x)(w — xq)\w — xq\dx, (2) 
./tail 

Iyq + mzciü + wq) — mxa{w — uq) = M^q + M^w + Mqq + Mww 

/•nose 
+CD b(x)(w — xq)\w — xq\xdx 

./tail 

—XGBW COS 6 — ZQBW sin 6, (3) 

where XQB = XQ — XB, ZQB = ZG — ZB, and the rest of the symbols are based 

on standard notation as shown in Table 1. Without loss of generality we can 

assume that ZB = XB = 0, so that XQB — X
G and ZQB = ZG- The cross flow 



integral terms in these equations become very important for high angles of 

attack maneuvering, where they provide the primary motion damping. The 

drag coefficient, Co, is assumed to be constant throughout the vehicle length 

for simplicity. This does not affect the qualitative properties of the results 

that follow. The vehicle pitch rate is, 

e = q. (4) 

Dynamic coupling between surge and heave/pitch is present due to coordinate 

coupling as a result of the nonzero metacentric height. However, it has been 

shown (Papoulias and Papadimitriou, 1995) that this coupling is of higher 

order and does not change the linear and nonlinear results that follow. 

B. HYDRODYNAMIC COEFFICIENTS 

Systematic studies based on semi-empirical methods have resulted in the 

evaluation of hydrodynamic coefficients for a generic body of revolution in 

terms of basic geometric properties. Curve fitting revealed that adequate ac- 

curacy for initial design can be obtained by equations of the form 

He   =   A1F^ + A2FnFm + A3Fl + A4Fn 

+A5Fm + A6 + A7 ( jß - < 

where He denotes a given coefficient in its standard nondimensional form, V 

the underwater volume of the body, L its nominal length, Fn the nose fraction, 

and Fm the mid-body fraction.  The regression coefficients Ai are presented 



Ai regression coefficient 
b(x) local beam of the hull 
C nominal value of volumetric coefficient 

CD quadratic drag coefficient 

Fn nose length fraction 
Fm -1 m middle-body length fraction 
Hc given hydrodynamic coefficient 

Iy vehicle mass moment of inertia 
K nonlinear stability coefficient 
L vehicle length 
m vehicle mass 
M pitch moment 
Ma derivative of M with respect to a 

q pitch rate 
T transformation matrix of x to z 
u forward speed 
uc critical value of u 
V total volume 
w heave velocity 
X state variables vector, x = [6, w, q] 

(%B,ZB) body fixed coordinates of vehicle center of buoyancy 
(^G, ZG) body fixed coordinates of vehicle center of gravity 

XGB center of gravity/center of buoyancy separation, XQ — %B 

ZGB vehicle metacentric height, ZQ — ZB 

Z heave force 

Za derivative of Z with respect to a 
aij expansion coefficients of z% in terms of zi, z^ 
6 stern plane deflection 
e criticality difference, e = u — uc 

e pitch angle 

Table 1: Nomenclature 



He Ax A2 Az A4 A5 Ae A7 

Zw -0.0641 -0.1149 -0.0632 +0.0670 +0.0732 -0.0263 -0.5769 
Mw +0.0277 +0.0499 +0.0266 -0.0283 -0.0301 -0.0056 -1.6357 
zq -0.0314 -0.0559 -0.0292 +0.0310 +0.0316 -0.0091 -0.0880 
Mq -0.0003 +0.0040 +0.0027 -0.0012 -0.0045 +0.0006 -0.1590 
Zyj +0.0002 +0.0007 +0.0007 -0.0008 -0.0016 -0.0144 -1.8067 
Mü -0.0002 -0.0007 -0.0007 +0.0008 +0.0016 +0.0144 +1.8067 
Mq -0.0031 -0.0046 -0.0021 +0.0031 +0.0024 -0.0013 -0.0808 

Table 2: Regression coefficients A{ 

in Table 2. Zq was assumed constant since the semi-empirical techniques 

failed to compute a reliable value. Basic geometric definitions for the body 

are presented in Figure 1. The constant C is approximately 8 x 10~3 and is 

the nominal value for the volumetric coefficient. These expressions are for a 

body of revolution without appendages and assume parabolic nose, parallel 

mid-body, and conical tail (Holmes, 1995). Typical ranges of applicability for 

these regression formulas are 0.05 to 0.25 for Fn, 0.40 to 0.60 for Fm, and 6.0 to 

10.0 for V/L3. Sample results for the above hydrodynamic coefficients versus 

the nose and mid-body fraction ratios are presented in Figures 2 through 8. 

C. DEGREE OF STABILITY 

The degree of stability is defined as the largest real part of all eigenvalues of 

the linearized system of equations (2), (3), and (4). Positive values indicate an 

unstable system while negative values show stability of forward motion. The 

degree of stability versus xGB for constant forward speed u = 0.5 and different 

values of zGB is shown in Figures 9 through 12. Based on these results we can 
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Figure 1: Geometric definitions 
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Figure 2: Hydrodynamic coefficient Mq versus Fn and Fm 
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Figure 3: Hydro dynamic coefficient M«, versus Fn and Fm 
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Figure 4: Hydrodynamic coefficient Z^ versus Fn and Fm 
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Figure 5: Hydrodynamic coefficient Mq versus Fn and Fv 

Figure 6: Hydrodynamic coefficient Zq versus Fn and Fv 
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Figure 7: Hydrodynamic coefficient Mw versus Fn and Fm 
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Figure 8: Hydrodynamic coefficient Zw versus Fn and Fm 
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-0.008   -0.006   -0.004   -0.002       0       0.002    0.004    0, 
xg 

,006    0.008     0.01 

Figure 9: Degree of stability for u = 0.5, varying ZQB, Fn = 0.3, and Fm — 0.6 

draw the following conclusions: 

1. In all cases the vehicle is dynamically more stable as the metacentric 

height ZQB is increased. 

2. In all cases the vehicle is dynamically less stable as the separation between 

the centers of gravity and buoyancy is reduced in absolute value. 

3. For constant Fn, increasing values of Fm result in less stable vehicles. 

This means that a longer tail is beneficial for stability of motion, as 

expected. 

4. The same conclusion holds for constant mid-body ratio Fm and varying 

nose ratios Fn. 
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-0.01    -0.008   -0.006   -0.004   -0.002        0        0.002    0.004    0.006    0.008     0.01 
xg 

Figure 10: Degree of stability for u = 0.5, varying ZQB, Fn = 0.1, and Fm = 0.4 

-0.01    -0.008   -0. 1.002        0        0.002    0.004    0.006    0.008     0.01 
xg 

Figure 11: Degree of stability for u = 0.5, varying ZQB, Fn = 0.3, and Fm = 0.4 
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-0.01    -0.008   -0.006 ).O04   -0.002       0       0.002    0.004    0.006    0.008     0.01 
xg 

Figure 12: Degree of stability for u = 0.5, varying ZQB, Fn — 0.1, and Fm = 0.6 

Corresponding results for constant ZQB — 0.015 and varying forward speeds 

u are shown in Figures 13 through 16. Similar conclusions as those discussed 

previously hold in these cases with the following exceptions: 

1. For very low forward speeds, the case XQ = 0 may be best for stability. 

2. For very low speeds, smaller tails may result in more stable configura- 

tions. 

Combined results for variations in both XQB and u are shown by the mesh 

plots of Figures 17 through 20. The value of ZQB was held constant at 0.015 

for all plots. These figures confirm our previous conclusions by presenting the 

results in more detail. 

Figure 21 shows the degree of stability versus Fn and Fm.   Both values 
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Figure 14: Degree of stability for ZQB = 0.015, varying u, Fn = 0.1, and Fm = 0.4 
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Figure 17: Degree of stability for Fn = 0.3 and Fm = 0.6 

0.01 

a21 

0- 

-0.2* 

■0.4- 

-0.6- 

■0.85 

Figure 18: Degree of stability for Fn = 0.1 and Fm = 0.4 
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Figure 19: Degree of stability for Fn — 0.3 and Fm = 0.4 

Figure 20: Degree of stability for Fn = 0.1 and Fm = 0.6 
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of XQ and ZQ were kept constant and equal to 0 and 0.015 respectively. The 

three surfaces shown correspond to values u = 0.4,0.5,0.6. The upper one 

corresponds to u = 0.6 while the lower one to u = 0.4. It can be seen that 

the degree of stability becomes more negative for decreasing u, and, generally 

speaking, for decreasing Fn and Fm. 

Figure 22 shows the degree of stability versus Fn and Fm. Both values of 

forward speed u and ZQ were kept constant and equal to 0.5 and 0.015 respec- 

tively. The three surfaces shown correspond to values XQ = -0.01,0, +0.01. 

The upper one corresponds to XQ = 0.0 while the lower one to XQ = +0.01. It 

can be seen that the degree of stability becomes more negative for increasing 

XQ in absolute value, and, generally speaking, for decreasing Fn and Fm. 

Figure 23 shows the degree of stability versus Fn and Fm. Both values of for- 

ward speed u and xg were kept constant and equal to 0.5 and 0.0 respectively. 

The three surfaces shown correspond to values ZQ = +0.005, +0.015, +0.025. 

The upper one corresponds to ZQ = +0.005 while the lower one to zG = 

+0.0025. It can be seen that the degree of stability becomes more negative for 

increasing ZQ, and, generally speaking, for decreasing Fn and Fm. 

D. CRITICAL SPEED 

The parameter value where the real part of the dominant complex conjugate 

pair of eigenvalues crosses zero defines the point where linear stability is lost. 

This critical point can be computed by considering the characteristic equation 

20 
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Figure 21:   Degree of stability versus Fn and Fm for XQ = 0, zG = 0.015, and 
u = 0.4,0.5,0.6 

0.35 

Figure 22:   Degree of stability versus Fn and Fm for u = 0.5, zG = 0.015, and 
xG= -0.01,0,+0.01 
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0.35 

Figure 23: Degree of stability versus Fn and Fm for u = 0.5, xG = 0, and zG - 
0.005,0.015,0.025 

of the system (Papadimitriou, 1994). Routh's criterion applied to this can be 

solved for the dimensionless weight, 

B2C2,0  /g-j 
W = 

A<iDl,\ - B2C2,l 

where, 

C2i0   =   Zw(Mq - mxG) - Mw(Zq + m) , 

C21   =   (m - Zyj) {ZGB cos d0 - xGB sin 0O) , 

■C>2,i   =   Zw(xGB sin 9Q - zGB cos 0O) ■ 

It should be mentioned that the effect of the forward speed u is embedded into 

the definition for the dimensionless vehicle weight W through, 

W 
W 

\pv?I? 
(6) 

22 



The value of the critical speed uc can then be evaluated from (5) and (6). 

Typical results are presented in Figures 24 through 27. A family of critical 

speeds, uc, is shown versus XQ with ZQ as the parameter of the curves. These 

results were obtained for a nose fraction Fn = 0.1,0.3 and mid-body fraction 

Fm = 0.4,0.6. The volumetric coefficient was kept at nominal for all results. 

Vertical plane motions are stable for forward speeds less than the critical speed. 

It can be seen that stability is increasing with increasing ZQ while XQ = 0 is the 

most conservative condition for stability. Therefore, a vehicle which is stable 

when properly trimmed will remain stable for off-trim conditions. The fact 

that a vehicle with a longer aft-body ought to be dynamically more stable is 

confirmed by comparing the results of Figures 24 and 26 to the results shown 

in Figures 25 and 27 respectively. It can be seen that the corresponding critical 

speeds become smaller, thereby reducing the dynamic stability margin, as the 

nose and mid-body fractions are raised. This trend is consistent for all values 

of XQ and ZQ examined. 

Combined plots of the critical speed versus both XQ and ZQ are shown in 

Figures 28 and 29. Figure 28 presents the surfaces for Fn = 0.3 and Fm = 

0.4,0.5,0.6. The uppper surface corresponds to Fm = 0.4. Figure 29 presents 

the surfaces for Fm — 0.5 and Fn = 0.1,0.2,0.3. The upper surface corresponds 

to Fn = 0.1. 

Combined plots of the critical speed versus both Fn and Fm are shown 

in Figures 30 through 32. Figure 30 presents the surface when ZQ = 0.0125 

and XQ = 0. Figure 31 gives us a comparative view keeping ZQ = 0.0125 and 

23 



0.7 

 1 1 1 1 1 1 1            | 

.-•-'" 

'—■ —-L__   :                          Ö-020    1        _j 4 ■ ' 
0.6 

""':'           ,-                          0.015          __„.;.   " 
■D 
a> 
8.0.5 
u 
1 ^~~~~~~~^——i___ io^oioj^ i--—^: 
o 

0.4 

0.3 
' ..;        p.005 J "'" 

  

QOl 1 1 1 1 > 1 ' 1 ' ' 
-if.01    -0.008   -0.006   -0.004   -0.002       0        0.002    0.004    0.006    0.008     0.01 

Figure 24: Critical speed versus XG for Fn = 0.1 and Fm = 0.4 and different values 

of ZQ 

0.7 

0.6 

!0.5 

0.4 

0.3- 

—^—^~ 1 1  T !               ! 

 k025--i- 

i            i 

L——J_—                   0.020^ J I —" 

P.015    I 

^ 

0.010    : 

0.005    ,,. 

i                i                l    1 1 1  

xg 

Figure 25: Critical speed versus XQ for Fn = 0.1 and Fm = 0.6 and different values 

of ZG 

24 



J.002        0       0.002    0.004    0.006    0.008     0.01 
xg 

Figure 26: Critical speed versus XQ for Fn = 0.3 and Fm = 0.4 and different values 
of ZQ 

0.7-• 

0.6 ~^._.4;._'_:: 

i.0.5- 

0.4- 

0.3- 

...    .0;025--   ■• 

i             r-         i  

-rrr. 

 —_L_     :                            Ö.020    \ 

--——4    ; JO.015    j —i "      I 

 1 -     i          i 

0.010    : 

i      i      t 

JO.005 J... - 

i            i 
0       0.002    0.004    0.006    0.008     0.01 

xg 

Figure 27: Critical speed versus xg for Fn = 0.3 and Fm = 0.6 and different values 
of ZQ 

25 



0.2; 
0.01 

0.025 

Figure 28: Critical speed versus XQ and zg for Fn = 0.3 and Fm = 0.4,0.5,0.6 

0.2; 
0.01 

0.025 

Figure 29: Critical speed versus XQ and ZQ for Fm = 0.5 and Fn = 0.1,0.2,0.3 

26 



0.35 
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Figure 32: Critical speed versus Fn and Fm for XQ = 0 and ZQ = 0.005,0.015,0.025 

Figure 33: Stability coefficient Gv versus XQ for constant Fn and different values of 

Fm 
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using XQ = —0.01,0,+0.01 to plot the surfaces as shown. The lower surface 

corresponds to XQ = 0. It can be seen that nonzero XQ increases the range 

of stability, while the general trend is to increase stability as both Fn and 

Fm become smaller. A similar plot for XQ = 0 and for three values of ZQ, 

0.005, 0.010, and 0.025 is shown in Figure 32. The lower surface corresponds 

to ZQ = 0.005 and the higher one to ZQ = 0.025. It can be seen that the 

metacentric height has by far the greatest effect on dynamic stability, while 

the effects of hull geometry are smaller. 

For comparison, a plot of the classical stability coefficient Gv from equation 

(1), is shown in Figure 33. The different curves correspond to various mid- 

body fractions, while the nose fraction is kept constant. It can be seen that Gv 

is negative throughout. Therefore, it would have predicted an unstable vehicle 

for all ranges of the parameters, which is of course incorrect. Furthermore, Gv 

becomes less negative as Fm is increased, which would suggest that dynamic 

stability is increased as the aft-body length is decreased. This is also a false 

conclusion. As we pointed out in the introduction, the classical stability index 

Gv should be used with extreme caution. 
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III. BIFURCATION ANALYSIS 

A. INTRODUCTION 

The nonlinear bifurcation analysis is based on the general methodology 

used in (Papadimitriou, 1994). The fundamental equations are reproduced 

here for completeness of the presentation. The nonlinear heave/pitch equations 

of motion (2), (3), and (4) are written in the form, 

Ö   =   q, (7) 

w   =   anw + ai2q + OLIZ{XGB COS 6 + ZQB sin 9) 

+dw(w,q) + ci(w,q) , (8) 

q   =   a2\w + a22q + a>2z{%GB cos 6 + ZQB sin 9) 

+dq(w,q)+c2(w,q) , (9) 

where the various coefficients are functions of the hydrodynamic derivatives 

and mass properties, and Iw, Iq are the cross flow integrals. 

The system of equations (7) through (9) is written in the compact form 

x = Ax + g(x), (10) 

where 

x=[9,w,q], (11) 

is the three state variables vector, and A is the linearized sytem matrix eval- 

uated at the nominal point xo-  The term g(x) contains all nonlinear terms 
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of the equations. Hopf bifurcation analysis can be performed by isolating the 

primary nonlinear terms in g(x). Keeping terms up to third order, we can 

write 

g(x) = g(2)(x) + g(3)(x). (12) 

Using equations (7) through (11), the various terms in (12) can be written as, 

ftM  =  o, 

92      =    {ly ~ Mq)rnzGq2 - {mxQ + Zq)mzQwq 

+dS)(w,q), (13) 

gf'   =    -(m - Zy1)mzGwq + {mxa +M^mzaq2 

+d®(w,q), 

and 

\CLIZ{XGB sin 0o - ZGB cos 90)93 , (14) 

gP    =    d?Xv,,q) + 

3 \d2z(xGB sin 90 - ZGB cos 90)9   . 

Expansion in Taylor series of dw, dq requires expansion of the cross flow inte- 

grals Iw, Iq, which require the Taylor series of 

/(0 = ^l- (15) 

This expression can be converted into an analytic function using Dalzell's 
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approximation (Dalzell, (1978), 

which is derived by a least squares fit of an odd series over some assumed range 

of £, namely — £c < £ < £c. This approximation has been extensively used in 

ship roll motion studies and is very useful for its intended purpose. However, 

in the present problem it suffers from the several drawbacks (Papadimitriou, 

1994). Instead of Dalzell's approximation, we employ the concept of general- 

ized gradient (Clarke, (1983), which is used in the study of control systems 

involving discontinuous or non-smooth functions. In this way we approximate 

the gradient of a non-smooth function at a discontinuity by a map equal to the 

convex closure of the limiting gradients near the discontinuity. In our problem 

we write, 

/(0   =   £o|£o| + 2|£o|(£-£o) + 

sign(6)(£-£o)2 + /(3)(0. (17) 

as the Taylor series epansion of /(£) near £o- The sign function in (17) can be 

approximated by, 

sign(eo) = Hm tanh ( ^ j . (18) 

The quantity 7 is a small regularization parameter and is used for proper 

normalization of the results. Using (18), we can approximate /(£) in the 

vicinity of £0 = 0 by, 

m « ^e ■ (i9) 
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Since 

£ H-* w — xq , 

we can express the non-smooth cross flow integral terms by, 

CD, Iw = ^(E0w
3 " 3E!W2q + SE2wq2 - E3q3) , 

67 

L = ^-(ElW
3 - 3E2w2q + 3E3wq2 - EAqZ) , 

67 

where 
/•nose 

E{= xlb(x) dx , 
./tail 

are the moments of the vehicle "waterplane" area. 

(20) 

(21) 

Using the previous second and third order Taylor series expansions, equa- 

tion (10) is written in the form, 

x = Ax + gw(x) + gw(x) . (3)/ (22) 

If T is the matrix of eigenvectors of A evaluated at the critical point u — uc, 

the linear change of coordinates, 

x = Tz ,     z = T_1x (23) 

transforms system (22) into its normal coordinate form, 

z = T_1ATz + T_1g(2)(Tz) + T_1g(3)(Tz) (24) 

At the Hopf bifurcation point, matrix T aAT takes the form, 

T_1AT = 
0 -UQ     0 

o>o 0     0 
0 0     p _ 
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where UQ is the imaginary part of the critical pair of eigenvalues, and the 

remaining eigenvalue p is negative. For values of u close to the bifurcation 

poit uc, matrix T_1AT becomes, 

a'e — (üjQ + co'e)        0 
(u>o + w'e) Oi'e 0 

0 0 p+p'e 
T_1AT = 

where e denotes the criticality difference 

e = u-uc , (25) 

and 

a'   =   derivative of the real part of the critical 

eigenvalue with respect to e , 

u>'   =   derivative of the imaginary part of the 

critical eigenvalue with respect to e , 

p    =   derivative of p with respect to e . 

Due to continuity, the eigevalue p + p'e remains negative for small nonzero 

values of e. Therefore, the coordinate z$ corresponds to a negative eigenvalue 

and is asymptotically stable. Center manifold theory predicts that the rela- 

tionship between the critical coordinates z\, z^ and the stable coordinate 23 is 

at least of quadratic order. We can then write z$ as, 

z3 = ocX\z\ + a12ziz2 + OL2iz\ , (26) 

where the coefficients, fty, in the quadratic center manifold expansion (26) 
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need to be determined. By differentiating equation (26) we obtain, 

i3 = 2anzizi + a\i{z\Z2 + ziz2) + layizizi . (27) 

We substitute z\ = — U)QZ2 and i2 = U)QZ\ and we obtain 

i3 = ai2^oz\ + 2(a22 - an)u0ziZ2 - a^o^ 

The third equation of (24) is written as, 

z3=pzz+ [T-y2)(Tz) 

(28) 

(3,3)   ' 
(29) 

where terms up to second order have been kept. If we denote the elements of 

T and T_1 by, 

T = K-] ,    T-1 = [ny] , (30) 

then 

T-ig(2)(Tz) 
di 

di 

ds 

where expressions for di, d2, d3, and the coefficients % are given in Papadim- 

itriou (1994). 

Equation (29) then becomes 

h = Vz% + d3 , 

and substituting (26) and the expression for ds into (31) we get, 

(31) 

*3    =     (Pall + ^32^25 + "33^35)^1 

+ (pai2 + n32^26 + "3346) 21^2 

0 

+ (pa22 + ™32^27 + «33^37)^2 ■ (32) 

36 



Comparing coefficients of (28) and (32) we get a system of linear equations 

which yields the coefficients in the center manifold expansion (26). 

Using the previous Taylor expansions and center manifold approximations, 

we can write the reduced two-dimensional system that describes the center 

manifold flow of (24) in the form, 

ii   =   a'ezi - (w0 + w'e)z2 + Fi(zu z2) , 

z2   =    (ojo + uj'e)zi + a'ez2 + F2(zi, z2) , 

where Fi, F2 are cubic polynomials in z\ and z2. 

If we introduce polar coordinates in the form, 

z\ = R cos (j) ,    z2 = R sin <j> , 

we can produce an equation describing the rate of change of the radial coor- 

dinate R, 

R = a'eR + P(<t>)R3 + Q(<f>)R2 ■ 

This equation contains one variable, R, which is slowly varying in time, and 

another variable, </>, which is a fast variable. Therefore, it can be averaged 

over one complete cycle in <f> to produce an equation with constant coefficients 

and similar stability properties, 

R = a'eR + KR3 + LR2 , 

where 

1    f2lt 1   rz% 

K   =   — /    P{<l>)d<t> 
Z7T JO 
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=   |(3rn + ri3 + r22 + 3r24) , 

1    /"27r 

L   =   — /    Q(d>)d<l> = 0. 
2ir Jo 

Therefore, the averaged equation becomes 

i? = a'eR + KR3 . (33) 

Equation (33) admits two steady state solutions, one at R = 0 which 

corresponds to the trivial equilibrium solution at zero, and one at 

Äo = y-^- (34) 

This equilibrium solution corresponds to a periodic solution or limit cycle in 

the cartesian coordinates zi, z2. For this limit cycle to exist, the quantity R0 

must be a real number. In our case a' is always positive, since the system loses 

its stability; i.e., the real part of the critical pair of eigenvalues changes from 

negative to positive, for increasing u. Therefore, existence of these periodic 

solutions depends on the value of K. Specifically, 

• if K < 0, periodic solutions exist for e > 0 or u > uc, and 

• if K > 0, periodic solutions exist for e < 0 or u < uc. 

The characteristic root of (33) in the vicinity of (34) is 

ß = -2a'e , (35) 

and we can see that 
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Figure 34:  Nonlinear stability coefficient versus XQ for Fn = 0.1, Fm = 0.4, and 
different values of CD 

• if periodic solutions exist for u > uc they are stable, and 

• if periodic solutions exist for u < uc they are unstable. 

B. RESULTS AND DISCUSSION 

Typical results of the nonlinear stability coefficient K are shown in Figures 

34 through 37. Figure 35 presents a plot of if ■ 7 versus XQ for ZQ = 0.015, 

Fn = 0.1, Fm = 0.6, and for different values of the quadratic drag coefficient 

CD. It should be emphasized that the use of if • 7 is more meaningful than the 

use of K, since it properly accounts for the use of the regularization parameter 

7.  Numerical evidence suggests that all curves K • 7 versus XQ converge for 
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7 —► 0. For practical purposes, values of 7 smaller than 0.001 produce identi- 

cal results. The results of Figure 8 demonstrate the profound effect that the 

quadratic drag coefficient CD has on stability of limit cycles. AU Hopf bifur- 

cations are supercritical (K < 0), and they become stronger supercritical as 

CD is increased. It is worth noting that results for CD = 0 produce subcritical 

behavior, K > 0, which is clearly incorrect. Thus, neglecting the effects of CD 

would have produce entirely wrong results in the present problem. Additional 

results show that the bifurcations become stronger supercritical as initial sta- 

bility ZQ is increased. Figure 34 presents similar results with the only difference 

being the value of mid-body fraction Fm = 0.4. It can be seen that smaller 

Fm for the same Fn, which results in longer body tail, may be beneficial for 

stability in the linear sense but it also generates less supercritical bifurcations. 
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Figure 38: Nonlinear stability coefficient versus Fm for XQ = 0, CD = 0.5, and 
different values of Fn 

This can probably be attributed to the increased responsiveness of the vehi- 

cle. Figures 36 and 37 show the same results for nose fraction Fn = 0.3. It 

should be emphasized, however, that altering the fore and aft body lengths 

might infuence the values of CD which, as we pointed out, is the single most 

important parameter for the nonlinear nature of the bifurcations. 

Figure 38 shows the nonlinear stability coefficient versus Fm for different 

values of Fn, while xG = 0 and CD = 0.5. It can be seen that smaller Fn 

for the same Fm, which results in longer body tail, generates less supercritical 

bifurcations. 

Figure 39 shows tne nonlinear stability coefficient versus Fn for different 

values of Fm, while xG = 0 and CD = 0.5. Again it is clear that longer body 
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tail generates less supercritical bifurcations. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

This work presented a comprehensive nonlinear study of straight line sta- 

bility of motion of submersibles in the dive plane under open loop conditions. 

A systematic perturbation analysis demonstrated that the effects of surge in 

heave/pitch are small and can be neglected. Primary loss of stability was 

shown to occur in the form of Hopf bifurcations to periodic solutions. The 

critical speed were instability occurs was computed in terms of metacentric 

height, longitudinal separation of the centers of buoyancy and gravity, and 

the dive plane angle. Analysis of the periodic solutions that resulted from the 

Hopf bifurcations was accomplished through Taylor expansions, up to third 

order, of the equations of motion. A consistent approximation, utilizing the 

generalized gradient, was used to study the non-analytic quadratic cross flow 

integral drag terms. The main results of this study are summarized below: 

1. The critical speed of loss of stability is a monotonically increasing func- 

tion of both vertical and longitudinal LCG/LCB separation. This means 

that a vehicle which is stable when properly trimmed will remain stable 

for off-trim conditions. 

2. Loss of stability occurs always in the form of supercritical Hopf bifurca- 

tions with the generation of stable limit cycles. It was found that this is 

mainly due to the stabilizing effects of the quadratic drag forces. 
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3. Even though the quadratic drag forces do not influence the initial loss of 

stability, they have a significant effect on post-loss of stability stabiliza- 

tion. 

4. In general, longer aft body sections seemed to increase the range of linear 

stability but influence adversely the resulting limit cycles upon the initial 

loss of stability. 

It should be emphasized that the occurrence of supercritical Hopf bifurcations 

is an attribute of the open loop system only. Under closed loop control, it is 

possible to experience either supercritical or strongly subcritical Hopf bifurca- 

tions, as shown in [Papoulias et al (1995)]. The latter are particularly severe 

in practice since self-sustained vehicle oscillations may be initiated prior to 

loss of stability, depending on the level of external excitation or the initial 

conditions. 
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APPENDIX 

The following is a list and description of the computer programs used in this 

thesis. The programs are written in FORTRAN or MATLAB. Complete print- 

outs of the programs follow after the list. 

• CRIT_O.M 

MATLAB program for calculating the critical speed for <5 = 0. 

• DSTAB.M 

MATLAB program for calculating the degree of stability. 

• HOPF-O.FOR 

FORTRAN program for evaluation of hopf bifurcation formulas using the 

sub off submarine model. 

47 



% Program crit_0.m 

% Evaluation of critical speed for delta=0 

clear 

rho = 1.94; 

g   = 32.2; 
L   = 13.9792; 

ndl = 0.5*rho*L~2 

nd2 = 0.5*rho*L~3 

nd3 = 0.5*rho*L~4 

nd4 = 0.5*rho*L~5 

m  = 1556.2363/(g*nd2); 

md = 1556.2363/g; 

V   = md/rho; 

zg   = 0.005; 

while zg<0.026, 

flagl   = 0; 
for Fn = 0.1:0.01:0.35; 

flagl  = flagl+1; 

flag2  = 0; 

for Fm = 0.3:0.01:0.6; 

flag2  = flag2+l; 

Fb     = 1-Fn-Fm; 

d       = ((12*V)./(pi*L*(3*Fm+2*Fn+Fb)))."0.5; 

r        = d/2; 

Vn    = (2/3*pi*r."2*L.*Fn); 

Mn    = Vn*rho; 
Vm   = (pi*r.~2.*Fm*L); 

Mm   = Vm*rho; 
Vb    = (l/3*pi*r."2*L.*Fb); 

Mb    = Vb*rho; 
In     = Mn.*(l/5*(r.~2+(L*Fn).~2)-(3*L*Fn/8).~2); 

Im    = Mm/12.*(3*r."2+(L*Fm).~2); 
lb     = Mb.*(3/5*(r.-2/4+(L*Fb).-2)-(L*Fb/4).~2); 

xcb   = pi*d.~2.*(2*L*Fn.*(L*Fm/2+3*L*Fn/8)... 

-L*Fb.*(L*Fb/4+L*Fm/2))/(12*V); 

Lcb   = L*(Fn+Fm/2)-xcb; 
Iyd    = In+Im+Ib+(Mn.*(Lcb-5*L*Fn/8).~2)... 

+(Mm.*(Lcb-L*Fm/2-L*Fn).~2)... 



Iym 
+(Mb.*(Lcb-L*(Fn+Fm+Fb/4)).~2); 

= Iyd/nd4; 

7, inputs A1,A2,A3,A4,A5,A6,A7,A8 
Al=[-0.0641, 0.0277, -0.0314, -0. 

A2=[-0.1149, 0.0499, -0.0559, 0. 

A3=[-0.0632, 0.0266, -0.0292, 0. 

A4=[ 0.0670,-0.0283, 0.0310, -0. 

A5=[ 0.0732,-0.0301, 0.0316, -0. 

A6=[-0.0263,-0.0056, -0.0091, 0. 

A7=[-0.5769,-1.6357, -0.0880, -0. 

for each coefficient 

.0003, 0.0002, -0.0002, -0.0031] 
,0040, 0.0007, -0.0007, -0.0046] 
,0027, 0.0007, -0.0007, -0.0021] 
0012, -0.0008, 0.0008, 0.0031] 

0045, -0.0016, 0.0016, 0.0024] 

0006, -0.0144, 0.0144, -0.0013] 
1590, -1.8067, 1.8067, -0.0808] 

% Hydrodynamic coefficient prediction equation 

Cl  = 8.023e-3; 

for i = 1:7, 

HCm(i) = Al(i)*Fn.*2+A2(i)*Fn.*Fm... 

+A3(i)*Fm.~2+A4(i)*Fn... 

+A5(i)*Fm+A6(i)+A7(i)*(V/L"3-C1); 

end 

= [0.5686,-1.4357,-0.2658,0.2675,1.1781,-30.5114,0.8149,1.0]; 

zqdot = -6.33e-4; 

HCm(8) = zqdot; 

ratio = [0.5686,-1.435 

HC = HCm./ratio; 

zqdot = -6.33e-4; 

zwdot = HC(5); 

zq = HC(3); 

zw = HC(1); 

mqdot = HC(7); 

mwdot = HC(6); 

mq = HC(4); 

mw = HC(2); 

Iratio = 0.92943; 

iy = Iym/Iratio; 

cd = 0.015; 

zb = 0/L; 
xudot = -0.05*m; 

xb = 0/L; 

xg = 0; 
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Gv    = 1 - mw.*(zq+m)./(zw.*(mq-m.*xg)); 

xgb   = xg-xb; 

zgb   = zg-zb; 

for j = 1: length.(zg) 

for i = l:length(xg) 

theta(i,j)  = atan(-xgb(i)./zgb(j)); 

aO =  (m-zwdot)*(Iy-mqdot)-(mwdot+m*xg(i))*(zqdot+m*xg(i)); 
bO =  (-zwdot*m-m*mw-zq*m)*xg(i)+(-m*mq+zwdot*mq-zqdot*mw... 

-zq*mwdot-m*mwdot-Iy*zw+mqdot*zw); 

C0 = -m*zw*xg(i)+mq*zw-zq*mw-m*mw; 
cl =  (-m*xg(i)+zwdot*xg(i)+m*xb-zwdot*xb)*sin(theta(i,j))... 

+(-m*zb-zvdot*zg(j)+zwdot*zb+m*zg(j))*cos(thetad,j)); 
dl =  (zw*xg(i)-zw*xb)*sin(theta(i,j))... 

+(zw*zb-zw*zg(j))*cos(theta(i,j)); 

w(i,j)     = bO*cO/(aO*dl-bO*cl); 
uO(i,j)  =   (1556.2363/(ndl*w(i,j)))~-5; 

ucr(flag2,flagl) = uO(i,j); 

end 

end 

end 

end 

Fn =0.1:0.01:0.35; 

Fm =0.3:0.01:0.6; 

mesh(Fn,Fm,ucr/8),grid 

xlabel('Fn') 

ylabel('Fm') 

zlabel('ucr') 

hold on 

zg=zg+0.01; 

end 
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% Program dstab.m 

% Matlab program for calculation the degree of stability 

clear 

clear global 

rho = 1.94; 

g = 32.2; 

L = 13.9792; 

ndl = 0.5*rho*L~2 

nd2 = 0.5*rho*L"3 

nd3 = 0.5*rho*L~4 

nd4 = 0.5*rho*L~5 

m = 1556.2363/(g*nd2); 

md = 1556.2363/g; 

V = md/rho; 

fig = 1; 

for Fn = 0.1:0.2:0.3, 

for Fm = 0.4:0.2:C ).6, 

Fb = 1-Fn-Fm; 

d    = ((12*V)./(pi*L*(3*Fm+2*Fn+Fb))).~0.5; 

r    = d/2; 

Vn = (2/3*pi*r.~2*L.*Fn); 

Mn = Vn*rho; 

Vm = (pi*r.~2.*Fm*L); 

Mm = Vm*rbo; 

Vb = (l/3*pi*r.-2*L.*Fb); 

Mb = Vb*rho; 

In = Mn.*(l/5*(r.~2+(L*Fn).~2)-(3*L*Fn/8).~2); 

Im = Mm/12.*(3*r.~2+(L*Fm).~2); 

lb = Mb.*(3/5*(r.~2/4+(L*Fb).-2)-(L*Fb/4).-2); 

xcb = pi*d."2.*(2*L*Fn.*(L*Fm/2+3*L*Fn/8)... 

-L*Fb.*(L*Fb/4+L*Fm/2))/(12*V); 

Lcb = L*(Fn+Fm/2)-xcb; 

Iyd = In+Im+Ib+(Mn.*(Lcb-5*L*Fn/8)."2)... 

+(Mm.*(Lcb-L*Fm/2-L*Fn).'2)... 

+(Mb.*(Lcb-L*(Fn+Fm+Fb/4))."2); 
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Iym = Iyd/nd4; 

% inputs A1,A2,A3,A4,A5,A6,A7,A8 for each coefficient 

Al=[-0.0641, 0.0277, -0.0314, -0.0003, 0.0002, -0.0002, -0.0031] 

A2=[-0.1149, 0.0499, -0.0559, 0.0040, 0.0007, -0.0007, -0.0046] 

A3=[-0.0632, 0.0266, -0.0292, 0.0027, 0.0007, -0.0007, -0.0021] 

A4=[ 0.0670,-0.0283, 0.0310, -0.0012, -0.0008, 0.0008,  0.0031] 

A5=[ 0.0732,-0.0301, 0.0316, -0.0045, -0.0016, 0.0016, 0.0024] 

A6= [-0.0263,-0.0056, -0.0091, 0.0006, -0.0144, 0.0144, -0.0013] 

A7= [-0.5769,-1.6357, -0.0880, -0.1590, -1.8067, 1.8067, -0.0808] 

7, Hydrodynamic coefficient prediction equation 

Cl = 8.023e-3; 

for i=l:7, 

HCm(i)=Al(i)*Fn.-2+A2(i)*Fn.*Fm+A3(i)*Fm."2+A4(i)*Fn... 

+A5(i)*Fm+A6(i)+A7(i)*(V/L~3-C1); 

end 

zqdot = -6.33e-4; 

HCm(8) = zqdot; 
ratio = [0.5686,-1.4357,-0.2658,0.2675,1.1781,-30.5114,0.8149,1.0]; 

HC=HCm./ratio; 

zqdot = -6.33e-4; 

zwdot = HC(5) 

zq = HC(3) 

zw = HC(1) 

mqdot = HC(7) 

mwdot = HC(6) 

mq = HC(4) 

mw = HC(2) 

Iratio = 0.92943; 

iy = Iym/Iratio; 

cd = 0.015 > 
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zg = 0.015; 

zb = 0/L; 

m = 1556.2363/(g*nd2); 

xudot = -0.05*m; 

xb = 0/L; 

xg    = linspace(-0.01,0.01,41) ; 

uo    = 8*linspace(0.2,.6,41); 

Gv    = 1 - mw.*(zq+m)./(zw.*(mq-m.*xg)); 

w = 1556.2363./(nc LI. *uo. -2) 

b = w; 

xgb = xg-xb; 

zgb   = zg-zb; 

theta = atan(-xgb./zgb); 

for j = l:length(uo) 

for i = 1:length(xg) 

= [-2*cd 0     0 0; 

0   zw    (zq+m) 0; 

0   mw (mq-m*xg(i)) (xgb(i)*sin(theta(i))... 

-zgb*cos(theta(i)))*b(j); 

0    0     1 0]; 

= [m-xudot 0 m*zg          0; 

0      m-zwdot -(m*xg(i)+zqdot)   0; 

m*zg   -(mwdot+m*xg(i ))  iy-mqdot       0; 

0       0 0            1]; 

evalsl = eig(A,B); % no surge coupling 

degstabKi, j) = max (real (evalsl)); 

end 

end 

figure(fig) 

mesb.(uo/8,xg,degstabl) ,grid 

xlabelOuo') 
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ylabel('xg') 

zlabelCdegree of stability') 

fig=fig+l; 

end 

end 
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C    PROGRAM HOPF.FDR 

C    EVALUATION OF HOPF BIFURCATION FORMULAS 

C   USING THE SUBOFF SUBMARINE MODEL 

C    Cd=0.5, ZG=0.015 ,Fn=0.24, Fm=0.52 

IMPLICIT DOUBLE PRECISION (A-H.O-Z) 

DOUBLE PRECISION L,IY,MASS,MQDOT,MWDOT,NDl, 

1 MQ,MW,K1,K2, 

2 BETA.GAMA, 

3 E0,E1,E2,E3,E4, 

4 DW1,DW2,DW3,DW4, 

5 001,00)2,003,004, 

6 MASSM,MASSN,MASSB,IB,IM,IN, 

7 RHO,CD,RADI,VOLM,VOLN,VOLB,LCB,XCB 

DOUBLE PRECISION M11,M12,M13,M21,M22,M23, 

1 M31,M32,M33, 

2 N11,N12,N13,N21,N22,N23, 

3 N31,N32,N33, 

4 L21,L22,L23,L24,L31,L32,L33,L34, 

5 L25,L26,L27,L35,L36,L37, 

6 L21A,L22A,L23A,L24A,L31A, 

7 L32A,L33A,L34A 

DOUBLE PRECISION LN,LM,LB,FM,FN,FB,KK 

C 

DIMENSION A(3,3),T(3,3),TINV(3,3),FV1(3),IV1(3),YYY(3,3) 

DIMENSION WR(3),WI(3),TSAVE(3,3),TLUD(3,3),IVLUD(3) 

DIMENSION ASAVE(3,3),A2(3,3),XL(55),BR(55) 

DIMENSION VEC0(55),VEC1(55),VEC2(55),VEC3(55),VEC4(55) 

DIMENSION HCAK7) ,HCA2(7) ,HCA3(7) ,HCA4(7) ,HCA5(7) 

DIMENSION HCA6(7),HCA7(7),HC(8),RATI0(7),SVLUD(3) 

OPEN (20,FILE='DATA.O.DAT',STATUS='NEW') 
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WEIGHT= 1556.2363 

L    =  13.9792 

RHO       1.94 

DO 8886 CD1 = 0.40,0.60,0.10 

CD   = 0.5*CD1*RH0 

G    = 32.2 

XB   =  0.0 

DO 8887 KK = 0.0050,0.0250,0.0050 

ZG   = KK*L 

ZB   =  0.0 

MASS = WEIGHT/G 

BOY  = WEIGHT 

VOLUME= MASS/RHO 

DO 8888 FN=0.10,0.32,0.10 

DO 8889 FM=0.40,0.62,0.10 

C WRITE (20,*) 'CD =',CD 

C WRITE (20,*) 'ZG =',KK 

C WRITE (20,*) 'FN =',FN 

C WRITE (20,*) 'FM =',FM 

FB     = 1.0-FN-FM 

LN     = L*FN 

LM    = L*FM 

LB      = L*FB 

DIAM = SQRT((12.*V0LUME) 

& /(3.14159*L*(3.*FM+2.*FN+FB))) 

WRITE(*,4001) DIAM 

RADI     = DIAM/2. 

VOLN   = (2./3.*3.14159*RADI**2.*L*FN) 

MASSN = VOLN*RHO 

VOLM  = (3.14159*RADI**2.*FM*L) 

MASSM = VOLM*RHO 

VOLB   = (l./3.*3.14159*RADI**2.*L*FB) 

MASSB = VOLB*RHO 

IN = MASSN*(1./5.*(RADI**2+(L*FN)**2) 
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fe -(3*L*FN/8)**2) 

IM       = MASSM/12.*(3.*RADI**2.+(L*FM)**2) 

IB        = MASSB*(3./5.*(RADI**2/4. 

t +(L*FB)**2)-(L*FB/4.)**2) 

XCB     = (3.14159*DIAM**2*(2.*L*FN 

fc *(L*FM/2.+3.*L*FN/8.) 

i -L*FB*(L*FB/4.+L*FM/2.)))/(12.*VOLUME) 

WRITE(*,4001) XCB 

LCB     = L*(FN+FM/2.)-XCB 

WRITE(*,4001) LCB 

IY       = IN+IM+IB+MASSN*(LCB-5*L*FN/8)**2 

+MASSM*(LCB-L*FM/2-L*FN)**2 

IY = IY+MASSB*(LCB-L*(FN+FM+FB/4))**2 

Inputs A1,A2,A3,A4,A5,A6,A7,A8 for each coefficient 

HCAl(l) = -0.0641 

HCAK2) = 0.0277 

HCAK3) = -0.0314 

HCAK4) = -0.0003 

HCAK5) = 0.0002 

HCAK6) = -0.0002 

HCAK7) = -0.0031 

HCA2(1) = -0.1149 

HCA2(2) = 0.0499 

HCA2(3) = -0.0559 

HCA2(4) = 0.0040 

HCA2(5) = 0.0007 

HCA2(6) = -0.0007 

HCA2C7) = -0.0046 

HCA3(1) = -0.0632 

HCA3(2) = 0.0266 

HCA3(3) = -0.0292 

HCA3(4) = 0.0027 

HCA3(5) = 0.0007 

HCA3(6) = -0.0007 
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HCA3C7) = -0.0021 

HCA4C1) = 0.0670 

HCA4(2) = -0.0283 

HCA4(3) = 0.0310 

HCA4(4) = -0.0012 

HCA4(5) = -0.0008 

HCA4C6) = 0.0008 

HCA4(7) = 0.0031 

HCA5C1) = 0.0732 

HCA5(2) = -0.0301 

HCA5(3) = 0.0316 

HCA5(4) = -0.0045 

HCA5(5) = -0.0016 

HCA5(6) = 0.0016 

HCA5(7) = 0.0024 

HCA6(1) = -0.0263 

HCA6C2) = -0.0056 

HCA6(3) = -0.0091 

HCA6(4) = 0.0006 

HCA6(5) = -0.0144 

HCA6(6) = 0.0144 

HCA6(7) = -0.0013 

HCA7C1) = -0.5796 

HCA7(2) = -1.6357 

HCA7(3) = -0.0880 

HCA7(4) = -0.1590 

HCA7(5) = -1.8067 

HCA7(6) = 1.8067 

HCA7(7) = -0.0808 

c Hydrodynamic coefficient pr 

c 
Cl = 8.023E-03 

RATIO(1) 0.5686 

RATIO(2) -1.4357 

RATIO(3) -0.2658 
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RATIO(4) 

RATIO(5) 

RATIO(6) 

RATIO(7) 

0.2675 

1.1781 

-30.5114 

0.8149 

DO 5000 1=1,7 

HC(I)=(HCA1(I)*FN**2+HCA2(I)*FN*FM 

>z +HCA3(I)*FM**2+HCA4(I)*FN 

fc        +HCA5(I)*FM+HCA6(I) 

'i +HCA7 (I) * (VOLUME/ (L*L*L) -Cl)) /RATIO (I) 

5000 CONTINUE 

HC(8) = -6.33E-04 

ZQDOT = -6.33E-04*0.5*RH0*L**4 

HC(8) ZQDOT 

ZWDOT HC(5)*0.5*RH0*L**3 

zq HC(3)*0.5*RHO*L**3 

ZW HC(1)*0.5*RH0*L**2 

MQDOT = HC(7)*0.5*RH0*L**5 

MWDOT = HC(6)*0.5*RH0*L**4 

MQ = HC(4)*0.5*RHO*L**4 

MW = HC(2)*0.5*RH0*L**3 

RATIO1 = 0.92943 

IY =  IY/RATI01 

WRITE(* ,4001) IY 

ND1 = 0.5*RH0*L**2 

ZGB = ZG-ZB 

c 
c DEFINE THE LENGTH X AND BREADTH B TERM 

c 

DO 333 1=0,21 

XL(I+1)= I*LB/21.0 

BR(I+1)=DIAM*XL(I+1)/LB 

333 CONTINUE 
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DO 334 1=1,2 

XL(22+I)= LB+I*LM/2.0 

BR(22+I)=DIAM 

334 CONTINUE 

DO 335  1=1,30 

: WRITE(*,*)   I 

XL(1+24)= XL(1+23)+1./4.*(L-XL(1+23)) 

IF     (((XL(I+24)-LB-LM)**2/(LN**2)).GT.1.0)  THEN 

BR(I+24)=0.0 

ELSE 

BR(I+24)=DIAM*SQRT(1.0-((XLCI+24)-LB-LM)**2/(LN**2))) 

ENDIF 

335 CONTINUE 

XL(55)  = L 

BR(55)  = 0 

DO  102 N = 1,55 

XL(N)   = XL(N)-L+LCB 

102     CONTINUE 

WRITE(20,7001)  XL 

WRITE(20,7001)  BR 
i 

DO  104 K = 1,55 

VECO(K)=BR(K) 

VEC1(K)=XL(K)*BR(K) 

VEC2(K)=XL(K)*XL(K)*BR(K) 

VEC3(K)=XL(K)*XL(K)*XL(K)*BR(K) 

VEC4(K)=XL(K)*XL(K)*XL(K)*XL(K)*BR(K) 

104 CONTINUE 

CALL TRAP(55,VEC0,XL,E0) 

CALL TRAP(55,VEC1,XL,E1) 

CALL TRAP(55,VEC2,XL,E2) 

CALL TRAP(55,VEC3,XL,E3) 

CALL TRAP(55,VEC4,XL,E4) 

EPSILON =  0.001 
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XGMIN=-0.01 

XGMAX=+0.01 

IXG=80 

XGMIN=XGMIN*L 

XGMAX=XGMAX*L 

DO 1 IT=1,IXG 

C       WRITE (*,3001) IT.IXG 

XG=XGMIN+(XGMAX-XGMIN)*(IT-1)/(IXG-1) 

XGB=XG-XB 

DV=(MASS-ZWDOT)*(IY-MQDOT) 

&       -(MASS*XG+ZQDOT)*(MASS*XG+MWDOT) 

CD6=CD/(3.DO*EPSILON*DV) 

DW1=CD6*((IY-MQDOT)*(-EO)+(MASS*XG+ZQDOT)*E1) 

DW2=CD6*((IY-MQDOT)*(3*E1)-(MASS*XG+ZQDOT)*3*E2) 

DW3=CD6*((IY-MQDOT)*(-3*E2)+(MASS*XG+ZQD0T)*3*E3) 

DW4=CD6*((IY-MQDOT)*(E3)-(MASS*XG+ZQDOT)*E4) 

DQ1=CD6*((MASS-ZWDOT)*(El)+(MASS*XG+MWDOT)*(-EO)) 

DQ2=CD6*((MASS-ZWDOT)*(-3*E2)+(MASS*XG+MWDOT)*(3*E1)) 

DQ3=CD6*((MASS-ZWDOT)*(3*E3)+(MASS*XG+MWDOT)*(-3*E2)) 

DQ4=CD6*((MASS-ZWDOT)*(-E4)+(MASS*XG+MWDOT)*(E3)) 

THETAO=ATAN(-XGB/ZGB) 

AAO=(MASS-ZWDOT)*(IY-MQDOT) 

&       -(MWDOT+MASS*XG)*(ZQDOT+MASS*XG) 

BBO=(-ZWDOT*MASS-MASS*MW-ZQ*MASS)*XG 

&    +(-MASS*MQ+ZWDOT*MQ-ZQDOT*MW 

&    -ZQ*MWDOT-MASS*MWDOT-IY*ZW+MQDOT*ZW) 

CCO=-MASS*ZW*XG+MQ*ZW-ZQ*MW-MASS*MW 

CC1=(-MASS*XG+ZWDOT*XG+MASS*XB-ZWDOT*XB)*SIN(THETAO) 

&    +(-MASS*ZB-ZWD0T*ZG+ZWDOT*ZB+MASS*ZG)*COS(THETAO) 

DD1=(ZW*XG-ZW*XB)*SIN(THETAO)+(ZW*ZB-ZW*ZG) 

&     *COS(THETAO) 

C After applying AD=BC ( Routh Criterion ), we manage to calculate 
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C the critical speed UO. 

WEI=BBO*CCO/(AAO*DDl-BBO*CCl) 

U0=DSQRT(1556.2363/WEI) 

U=U0 

WRITE (*,*) U/8.0,XG/L 

C 

C     DETERMINE [A] AND [B] COEFFICIENTS 

C 

Al1DV=(IY-MQDOT)*ZW+(MASS*XG+ZQDOT)*MW 

A12DV=(IY-MQDOT)*(MASS+ZQ)+(MASS*XG+ZQDOT)*(MQ-MASS*XG) 

A13DV=-(MASS*XG+ZQDOT)»WEIGHT 

A21DV=(MASS-ZWDOT)*MW+(MASS*XG+MWDOT)*ZW 

A22DV=(MASS-ZWDOT)*(MQ-MASS*XG)+(MASS*XG+MWDOT)*(MASS+ZQ) 

A23DV=-(MASS-ZWDOT)*WEIGHT 

C 

A11=A11DV/DV 

A12=A12DV/DV 

A13=A13DV/DV 

A21=A21DV/DV 

A22=A22DV/DV 

A23=A23DV/DV 

C 

C11DV=(IY-MQDOT)*MASS*ZG 

C12DV=-(MASS*XG+ZQDOT)*MASS*ZG 

C21DV=-(MASS-ZWDOT)*MASS*ZG 

C22DV=(MASS*XG+MWDOT)*MASS*ZG 

C 

C11=C11DV/DV 

C12=C12DV/DV 

C21=C21DV/DV 

C22=C22DV/DV 

C      EVALUATE TRANSFORMATION MATRIX OF EIGENVECTORS 

C 

Kl=-(XGB*SIN(THETAO)-ZGB*COS(THETAO)) 
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K2=-(1./6.)*(ZGB*COS(THETAO)-XGB*SIN(THETAO)) 

C 

A(1,1)=0.0 

A(l,2)=0.0 

A(l,3)=1.0 

A(2,1)=A13*K1 

A(2,2)=A11*U 

A(2,3)=A12*U 

A(3,1)=A23*K1 

A(3,2)=A21*U 

A(3,3)=A22*U 

DO  11  1=1,3 

DO  12 J=l,3 

ASAVE(I,J)=A(I,J) 

12 CONTINUE 

11  CONTINUE 

CALL RG(3,3,A,WR,WI,1,YYY,IV1,FV1,IERR) 

CALL DSOMEG(IEV,WR,WI,OMEGA,CHECK) 

C       WRITE (*,*) IEV 

C       WRITE (*,*) (WR(IWR),IWR=1,3) 

C       WRITE (*,*) (WI(IWI),IWI=1,3) 

OMEGAO=OMEGA 

DO 5 1=1,3 

T(I,1)= YYY(I.IEV) 

T(I,2)=-YYY(I,IEV+1) 

5 CONTINUE 

IF (IEV.EQ.l) GO TO 13 

IF (IEV.EQ.2) GO TO 14 

STOP 3004 

14  DO 6 1=1,3 

T(I,3)=YYY(I,1) 

6 CONTINUE 

GO TO 17 

13 DO 16 1=1,3 

T(I,3)=YYY(I,3) 

16  CONTINUE 
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17  CONTINUE 

C 

C      NORMALIZATION OF THE CRITICAL EIGENVECTOR 

C 

INORM=l 

IF (INORM.NE.O) CALL NORMAL(T) 

C 

C      INVERT TRANSFORMATION MATRIX 

C 

DO 2 1=1,3 

DO 3 J=l,3 

TINV(I,J)=0.0 

TSAVE(I,J)=T(I,J) 

3 CONTINUE 

2  CONTINUE 

CALL DLUD(3,3,TSAVE,3,TLUD,IVLUD) 

DO 4 1=1,3 

IF (IVLUD(I).EQ.O) STOP 3003 

4 CONTINUE 

CALL DILU(3,3,TLUD,IVLUD,SVLUD) 

DO 8 1=1,3 

DO 9 J=l,3 

TINV(I,J)=TLUD(I,J) 

9    CONTINUE 

8  CONTINUE 

C 

C      CHECK Inv(T)*A*T 

C 

IMULT=1 

IF (IMULT.EQ.l) CALL MULT(TINV,ASAVE,T)A2) 

IF (IMULT.EQ.O) STOP 

P=A2(3,3) 

PEIG=P 

C       WRITE (*,4001) (A2(1,JA2),JA2=1,3) 

C       WRITE (*,4001) (A2(2,JA2),JA2=1,3) 

C       WRITE (*,4001) (A2(3,JA2),JA2=1,3) 
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C PAUSE 

C 

C DEFINITION OF Nij 

C 

N11=TINV(1,1) 

N21=TINV(2,1) 

N31=TINV(3,1) 

N12=TINV(1,2) 

N22=TINV(2,2) 

N32=TINV(3,2) 

N13=TINV(1,3) 

N23=TINV(2,3) 

N33=TINV(3,3) 

C 

C      DEFINITION OF Mij 

C 

M11=T(1,1) 

M21=T(2,1) 

M31=T(3,1) 

M12=T(1,2) 

M22=T(2,2) 

M32=T(3,2) 

M13=T(1,3) 

M23=T(2,3) 

M33=T(3,3) 

C 

C      DEFINITION OF Lij 

C 

L25=C11*M31*M31+C12*M21*M31 

L26=2*C11*M31*M32+C12*(M21*M32+M22*M31) 

L27=C11*M32*M32+C12*M22*M33 

L35=C22*M31*M31+C21*M21*M31 

L36=2*C22*M31*M32+C21*(M21*M32+M22*M31) 

L37=C22*M32*M32+C21*M33*M22 

C 

C      DEFINITION OF ALFA, BETA, GAMA 
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Dl =N32*L25 + N33*L35 

D2 =N32*L26 + N33*L36 

D3 =N32*L27 + N33*L37 

Dll=-P 

D12=0MEGA0 

D21=-2*0MEGA0 

D22=-P 

D23=2*0MEGA0 

D32=-0MEGA0 

D33=-P 

BETA=(D2-D21*D1/D11-D23*D3/D33) 

/(D22-D21*D12/D11-D23*D32/D33) 

ALFA=(D1-D12*BETA)/Dl1 

GAMA=(D3-D32*BETA)/D33 

L21A=2*C11*ALFA*M31*M33+C12*ALFA 

*(M21*M33+M23*M31) 

L22A=2*C11*ALFA*M32*M33 + 2*C11*BETA*M31*M33 

+ C12*ALFA*(M22*M33+M32*M23) 

+ C12*BETA*(M21*M33+M23*M31) 

L23A=2*C11*GAMA*M31*M33+2*C11*BETA*M32*M33 

+ C12*GAMA*(M21*M33+M23*M31) 

+ C12*BETA*(M22*M33+M23*M32) 

L24A=2*C11*GAMA*M32*M33+C12*GAMA 

*(M22*M33+M23*M32) 

L31A=2*C22*ALFA*M31*M33+C21*ALFA 

*(M21*M33+M23*M31) 

L32A=2*C22*ALFA*M32*M33+2*C22*BETA*M31*M33 
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+ C21*ALFA*(M22*M33+M32*M23) 

+ C21*BETA*(M21*M33+M23*M31) 

L33A=2*C22*GAMA*M31*M33+2*C22*BETA*M32*M33 

+ C21*GAMA*(M21*M33+M23*M31) 

+ C21*BETA*(M22*M33+M23*M32) 

L34A=2*C22*GAMA*M32*M33+C21*GAMA 

*(M22*M33+M23*M32) 

L21=L21A+A13*K2*M11**3+DW1*M21**3 

+DW2*M31*M21**2 

+DW3*M21*M31**2+DW4*M31**3 

L22=L22A+3*A13*K2*M12*M11**2+3*DW1*M22*M21**2 

+DW2*(2*M21*M22*M31+M32*M21**2) 

+DW3* (2*M21*M31*M32+M22*M31**2) 

+3*DW4*M32*M31**2 

L23=L23A+3*A13*K2*M11*M12**2+3*DW1*M21*M22**2 

+DW2*(M31*M22**2+2*M21*M22*M32) 

+    DW3*(M21*M32**2+2*M22*M31*M32) 

+    3*DW4*M31*M32**2 

L24=L24A+A13*K2*M12**3+DW1*M22**3 

+DW2*M32*M22**2 

+DW3*M22*M32**2+DW4*M32**3 

L31=L31A+A23*K2*M11**3+DQ1*M21**3 

+DQ2*M31*M21**2 

+DQ3*M21*M31**2+DQ4*M31**3 

L32=L32A+3*A23*K2*M12*M11**2+3*DQ1*M22*M21**2 

+DQ2*(2*M21*M22*M31+M32*M21**2) 

+DQ3*(2*M21*M31*M32+M22*M31**2) 

+3*DQ4*M32*M31**2 

L33=L33A+3*A23*K2*M11*M12**2+3*DQ1*M21*M22**2 

+    DQ2*(M31*M22**2+2*M21*M22*M32) 

+    DQ3*(M21*M32**2+2*M22*M31*M32) 

+    3*DQ4*M31*M32**2 

L34=L34A+A23*K2*M12**3+DQ1*M22**3 
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+DQ2*M32*M22**2 

+DC)3*M22*M32**2+DQ4*M32**3 

R11=N12*L21+N13*L31 

R12=N12*L22+N13*L32 

R13=N12*L23+N13*L33 

R14=N12*L24+N13*L34 

R21=N22*L21+N23*L31 

R22=N22*L22+N23*L32 

R23=N22*L23+N23*L33 

R24=N22*L24+N23*L34 

C 

C      EVALUATE DALPHA AND DOMEGA 

C 

UINCO.OOl 

UR =U+UINC 

UL =U-UINC 

U    =UR 

A(1,1)=0.0 

A(l,2)=0.0 

A(l,3)=1.0 

A(2,1)=A13*K1 

A(2,2)=A11*U 

A(2,3)=A12*U 

A(3,1)=A23*K1 

A(3,2)=A21*U 

A(3,3)=A22*U 

CALL RG(3,3,A,WR,WI,0,YYY,IV1,FV1,IERR) 

CALL DSTABL(DEOS,WR,WI,FREQ) 

ALPHR=DEOS 

OMEGR=FREQ 

U=UL 
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A(1,1)=0.0 

A(l,2)=0.0 

A(l,3)=1.0 

A(2,1)=A13*K1 

A(2,2)=A11*U 

A(2,3)=A12*U 

A(3,1)=A23*K1 

A(3,2)=A21*U 

A(3,3)=A22*U 

C 

CALL RG(3,3,A,WR,WI,0,YYY,IV1,FV1,IERR) 

CALL DSTABL(DEOS,WR,WI,FREQ) 

ALPHL=DEOS 

OMEGL=FREQ 

C 

DALPHA=(ALPHR-ALPHL)/(UR-UL) 

D0MEGA=(OMEGR-OMEGL)/(UR-UL) 

C 

C      EVALUATION OF HOPF BIFURCATION COEFFICIENTS 

C 

C0EF1=3.0*R11+R13+R22+3.0*R24 

C0EF2=3.0*R21+R23-R12-3.0*R14 

AMU2 =-C0EFl/(8.0*DALPHA) 

BETA2=0.25*C0EF1 

C      TAU2 =-(C0EF2-D0MEGA*C0EFl/DALPHA)/(8.O*0MEGAO) 

C      PER =2.0*3.1415927/0MEGA0 

C      PER =PER*U/L 

C       WRITE (20,2001) XCB 

WRITE (20,2001) XG/L,C0EF1 

1  CONTINUE 

8889 CONTINUE 

8888 CONTINUE 

8887 CONTINUE 

8886 CONTINUE 

STOP 

1001 FORMAT (' ENTER NUMBER OF DATA LINES') 
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1002 FORMAT (' ENTER UO, ZG, AND DSAT') 

1003 FORMAT (' ENTER BOW PLANE TO STERN PLANE RATIO') 

1004 FORMAT (' ENTER ZG') 

2001 FORMAT (2E14.5) 

4001 FORMAT (1F15.5) 

7001 FORMAT (6F15.5) 

3001 FORMAT (215) 

END 
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